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ABSTRACT 

The ballistic boundaries, or maximum ranges of ejected material, 
for many applicable surface and buried explosions are summarized and 
scaling expressions are derived which will be helpful in predicting the 
ballistic boundaries for explosions of other energies.  In establishing 
safety zones it is advisable to multiply predicted boundaries by a fac- 
tor of 1.5 to 2.0, because of a finite probability that the boundaries 
observed for a limited number of events will be exceeded if more shots 
are fired. 
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MAXIMUM MISSILE RANGES FROM 
SURFACE AND BURIED EXPLOSIONS 

An estimate of maximum missile distances is needed for establish- 

ing safety criteria for cratering explosions.  Ejecta formation and 

distribution involves complex mechanisms as indicated by the following 

outline: 

Ground Shock: 

Initial velocity (particle velocity of the shock wave) 

Initial angle (position in the shock field) 

Missile size 

Medium strength properties 

Pre-existing fracture patterns 

Shock strength 

Modifying Phenomena: 

Acceleration due to gas expansion 

Acceleration by gas flow or air flow 

Acceleration or deceleration by friction with 
adjacent material 

Acceleration or deceleration and direction change 
by ballistic collision 

Deceleration by drag 

Local wind velocity (for small particles) 



Theory 

No general theory of ejecta formation and distribution exists. 

While Cherry (Reference 1) has a code which partially shows the disper- 

sion for certain buried explosions, it neglects missile size and all 

of the modifying phenomena. 

Sherwood (Reference 2) has treated air drag by adopting a ballis- 

tic trajectory after the acceleration due to gas expansion has ceased. 

He also adopts an experimentally obtained particle-size distribution. 

He does not take into account this particle-size spatial distribution 

within the stress field:  the smallest particles originate closest to 

the charge where stress levels are high and where at certain locations 

initial velocities are high.  Still, his work is a considerable refine- 

ment on that of Cherry, and of Hess and Nordyke (Reference 3). 

Any further development of Sherwood's approach would be better 

suited to determining ejecta distribution than to defining a ballistic 

boundary.  The maximum missile range is a probabilistic matter relating 

to medium properties and the particle-size spatial distribution men- 

tioned above.  Using Sherwood's model, it is possible to determine the 

maximum range for any given particle size; it is not possible to deter- 

mine the probability that a missile of a size which maximizes range 

will also originate from a point which maximizes range. 

Bishop (Reference 4) treated the simpler situation of the ballis- 

tic boundary from cased explosive charges detonated above ground, based 

on early work by Gurney (Reference 5).  Their methods if applied to 

surface bursts or buried uncased charges would result in overestimates 

of maximum missile ranges. 

Absence of a theory for predicting a ballistic boundary makes it 

necessary to fall back on experimental determination of that boundary. 



Results of Experiment 

Tables I-IV summarize the available data on ballistic boundaries 

without regard for missile size.  The tables cover the boundaries for 

missiles from spherical charges on and in soil and rock, and for hemis- 

pherical charges on soil and rock.  It should be emphasized that the 

ranges given were the maximums observed, but it is quite possible that 

missiles at greater ranges escaped detection.  Consequently maximum 

range in the sense used here should be interpreted as meaning "at least 

as far as." 

Surface Bursts 

Figure 1 shows surface burst data together with scaling relation- 

ships developed (Henny and Carlson, Reference 6).  The power law for 

the ballistic boundary for missiles from hemispherical charges on soil 

parallels the one for hemispherical charges on rock, but its value is 

about 45 percent of that for rock.  In spite of the poorer shock trans- 

mission in soil, the shock strengths are sufficient to break the soil 

into smaller pieces of ejecta which have a more drag-limited trajectory. 

The White Tribe boundary is nearly twice that for the SES events 

(Table IV), either because the caliche tends to form clods which have 

a greater range or because the charge was one of three detonated simul- 

taneously in a triangular array which may have resulted in an enhanced 

trajectory. 

For spherical charges, the results of the MTCE events yield power 

laws quite different from those of hemispherical charges (Tables I and 

III).  There is no clear reason why a ballistic boundary from spherical 

charges should scale differently.  It is a judgment that the boundary 

for the 2000 and 4000-pound spherical charges is too small, either 

because maximum trajectory missiles were not produced or because, if 

produced, they were not found.  It is also believed that a better de- 

scription of the ballistic boundary would be given by a power law of 



approximately W   applied to the maximum range for the 16,000-pound 

MTCE and the Flat Top I events.  This suggests nearly twice the maximum 

range for spherical charges as for hemispherical. 

The 2425-, 3325-, and 3286-foot ranges for the Air Vent I, and 

Flat Top II and III spherical charges (Table II) are for plastic arti- 

ficial missiles.  They probably represent typical boundaries for soil 

containing rocks of comparable size. 

Buried Charges 

Observed ballistic boundaries for buried spherical charges are 

also tabulated in Tables I and II. Attempts to scale the ballistic 

boundary by cube-root scaling made it clear that cube-root scaling was 

not applicable.  Trials with other scaling values indicated that the 

most consistent results could be obtained by scaling the depth of burst 
-i/o "I / C. 

(DOB) by W '  and the maximum ballistic range by W     The upper bound- 

ary of the DOB/range relationship is in the rock data of Buckboard, Pre- 

Schooner, Pre-Schooner II, and Palanquin.  The Sulky maximum range is 

low because it was obtained from aerial photographs rather than ground- 

level observation.  For Dugout, a row charge, both the weight of a single 

charge and of the total row are indicated.  If scaled as a single 40,000- 

pound charge, Dugout is in reasonable agreement with the other rock data 

(see Figure 2).  Palanquin is also shown twice in Figure 2, both for the 

announced yield and for half that value; the lower yield was indicated 

by air-blast data (Reference 27). 

The maximum values for soil are always less than those for rock 

because the soil breaks into less than optimum trajectory sizes, the 

stress wave is weaker, and what stones there are in the soil may not be 

of a size and location for maximum trajectory.  In principle the ballis- 

tic boundary for stones included in soil could nearly equal that for 

rock if a stone of the proper size existed in an appropriate location. 

The probability is low, however.  Maxima from Sedan and from CAPSA 8 

approach rock values but the plastic artificial missile of Air Vent I 

did not do so, and in the same shot, natural missiles were observed only 

to 1800 feet. 
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Conclusions 

Surface Explosions: 

Hemispheres 

Spheres 

(103 lb to 106 lb) 

0.4 

P. orK V 
R   = 30W max 

R „ = 70W max 
0.4 

Soil 

R 

Buried Explosions: 

Tl/6 

(10J lb to 0.5 kt) 

3       /nn„   v2 

max WJ [-533 (-,) + 2307 (^j 3678 (^r) + 2407] . Iw^- 
There is a finite probability that boundaries arrived at on the 

basis of a small sample would be exceeded by a larger number of events. 

Where the above relationships are used for safety considerations, it is 

advisable that the maximum ranges be multiplied by 1.5 or 2. 0* 

There is a paradox in that the maximum ranges for surface bursts 

scale as W ' whereas those for buried charges appear to scale as W ' . 

There is a similar paradox related to scaling of crater radius; surface 

bursts scale as W "  and buried charges as W      .  Since we are unable 

to explain either, it would not be surprising if both paradoxes were 

found to have a common cause.  Both leave an uncertainty about which 

scaling is proper for shallow buried charges.  Thus, in the region be- 
DOB _ n ,. ^/.„,l/3 tween zero and "Y"^ =0.4 ft/lb it is recommended that the surface 

burst predictions be applied. 
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TABLE I 

Spherical Charges   -  Rock Medium 

Series-Shot Charge Weight 

4,000  lb 

Burial 
Depth 
(ft) 

2.2  above 

Maximum 
Range 
(ft) 

250 

Medium 

Basalt 

Ref 

MTCE   -  ST1 6 
-  ST3a 4,000  lb 2.2  above 180 Basalt 6 
-  S2a 4,000  lb 0 850 Basalt 6 
-  S4a 4,000  lb 0 720 Basalt 6 
- C2 4,000  lb 2.2 3,300 Basalt 6 
-  CS 2,000  lb 0 450 Basalt 6 
-  LS 16,000  lb 0 3,225 Basalt 6 

Flat Top  I 40,000 lb 0 4,060 Limestone 7 
Buckboard  11 .   40,000  lb 25.5 4,158 Basalt 8 
Buckboard  12 40,000  lb 42.7 1,988 Basalt 8 
Buckboard   13 40,000  lb 58.8 No 

Record 
Basalt 8 

Buckboard  5,   10 1,000  lb 5 3,300 Basalt 8 
Buckboard 4 1,000  lb 10 1,650 Basalt 8 
Buckboard  8 1,000  lb 15 870 Basalt 8 
Pre-Schooner A 39,250  lb 59 507 Basalt 9 

B 39,450  lb 51 984 Basalt 9 
C 39,840  lb 67 216 Basalt 9 
D 39,590  lb 43 1,550 Basalt 9 

Pre-Schooner II 180,000  lb 71 2,320 Basalt 10 
Dugout 5x40,000  lb 

(Row) 
59 1,279 Basalt 11 

Palanquin 4.3 kt 280 1,590 Basalt 12 
Danny Boy 0.43 kt 110 >879 Basalt 13 
Sulky 0.085  kt 90 > 87 Basalt 14 

I 
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TABLE II 

Spherical Charges - Soil 

Series-Shot Charge Weight 

100 kt 

Burial 
Depth 
(ft) 

635 

Maximum 
Range 
(ft) 

7,019 

Medium Ref 

Sedan NTS alluvium 15 

CAPSA 8 1,000 lb 12.5 970 Albuquerque 
alluvium 

16 

Stagecoach 1 40,000 lb 80 No 
Record 

NTS alluvium 17 

Stagecoach 2 40,000 lb 17.1 510 NTS alluvium 17 

Stagecoach 3 40,000 lb 34.2 1,793 NTS alluvium 17 

Scooter 1,000,000 lb 100 No 
Record 

NTS alluvium 18 

Dugway 310 320 lb 3.5 above 250 Dry clay 19 

Dugway 312 2,560 lb 7 500 Dry clay 19 

Dugway 315 40,000 lb 17.5 1,050 Dry clay 19 

Dugway 318 320,000 lb 35 3,500 Dry clay 19 

Air Vent I 40,000 lb 17.1 1,800/ 
2 ,425* 

Playa 20 

Jangle HE 3 2,560 lb 6.84 3,500 NTS alluvium 21 

Jangle U 1.2 kt 17 5,500 NTS alluvium 22 

Flat Top II 40,000 lb 0 3,325* Playa 20 

Flat Top III 40,000 lb 0 3,286* Playa 20 

Plastic artificial missile 

TABLE III 

Hemispherica 1 Charges - Rock 

Series-Shot 
Charge Weight 

(lb) 
Bur ial Depth 

(ft) 

Maximum 
Range 
(ft) 

780 

Medium 

Basalt 

Ref 

MTCE HI 4,000 0 5 

MTCE H2 16,000 0 1,500 Basalt 5 

Sailor Hat 1,000,000 0 7,200 Basalt 23 
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TABLE IV 

Hemispherical Charges - Soil 

Series-Shot 
Charge Weight 

(lb) 
Bui ■ial Depth 

(ft) 

Maximum 
Range 
(ft) 

1,100 

Medium 

Caliche 

Ref 

White Tribe 11,560 0 24 

SES- Snowball 1,000,000 0 3,250 Silt 25 

SES 200,000 0 1,850 Silt 26 

SES 10,000 0 540 Silt 26 

I 
0) 

§ 
u 
a 
I 

■§ s 

io5 c- 

10 

10" 

10 
10 

Rock - spheres 

*tA- = °-2m 
,0.96 

 ■ ■ " 

10" 

ml I        I      I    I   I LL 

Rock - hemispheres 

,0.4 

14.8*^ 

J°i    A„ 01 Ji 

■  O   Rock 
•   O  Soil 

■      ■    i   ■ i i i i 

10' 10" 

Charge weight - lbs 

10 

 I 

107 

Figure 1.  Surface burst scaling relationships 
(Data for rock from Reference 6) 
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Figure 2.  Buried charges scaling relationships 
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